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Abstract e ——

Large Language Models (LLMs) inevitably ac-
quire harmful information during training on
massive datasets. LLM unlearning aims to elim-
inate the influence of such harmful information
while maintaining the model’s overall perfor-
mance. Existing unlearning methods, repre-
sented by gradient ascent-based approaches,
primarily focus on forgetting target data while
overlooking the crucial impact of logically re-
lated knowledge on the effectiveness of unlearn-
ing. In this paper, through both theoretical and
experimental analyses, we first demonstrate
that a key reason for the suboptimal unlearn-
ing performance is that models can reconstruct
the target content through reasoning with logi-
cally related knowledge. To address this issue,
we propose Unlearning Improvement via Pa-
rameter Extrapolation (UIPE), a method that
removes knowledge highly correlated with the
forgetting targets. Experimental results show
that UIPE significantly enhances the perfor-
mance of various mainstream LLM unlearning
methods on the TOFU benchmark.

1 Introduction

Large language models (LLMs) trained on mas-
sive datasets show exceptional capabilities (Kaplan
et al., 2020; Wei et al., 2022). However, such ex-
tensive datasets inevitably contain harmful infor-
mation, which diminishes model performance and
may cause societal challenges. (Yao et al., 2024).
For instance, LLMs expose private information,
copyrighted content and inherent biases from their
training data (Carlini et al., 2021; Huang et al.,
2022; Zhao et al., 2024).

To address the aforementioned risks, LLM un-
learning has emerged as a critical research direction.
LLM unlearning aims to mitigate the influence of
undesired data (Cao and Yang, 2015; Liu et al.,

2024b; Wang et al., 2023; Eldan and Russinovich,

“Equal contribution.
Corresponding author.

Target Forget set
(Patient John is diagnosed with ~ |—>
diabetes)

Gradient .
Ascent

What is Patient John's
medical condition?

Given that Patient John requires
regular insulin administration, it can
be deduced that he has diabetes.

V

«—

What is Patient John's
medical condition?

g

=

—
There is no information about John.

14

Figure 1: UIPE is motivated by the observation that after
gradient ascent unlearning of John’s private data, the
model still retains logically related knowledge, allowing
it to infer the forgotten information.

2023; Liu et al., 2024d). Gradient ascent-based
(GA) LLM unlearning has emerged as one of the
predominant methodologies in this field (Jang et al.,
2022).

Recently, numerous studies have emerged aimed
at improving the GA method. A popular approach
regularizes the objective by combining forgetting
and utility losses, aiming to forget specific data
while preserving performance, such as Grad. Diff.
(Yao et al., 2023) and KL Min. (Chen and Yang,
2023). Additionally, inspired by Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024),
negative preference optimization (NPO) alleviates
catastrophic collapse during the forgetting process
(Zhang et al., 2024). Despite these advancements,
effective unlearning techniques for LLMs remain
an open challenge (Maini et al., 2024; Choi et al.,
2024; Shumailov et al., 2024).

We propose the hypothesis that one of the key
factors contributing to the suboptimal unlearning
performance of LLMs is that they can infer the



knowledge that should have been forgotten by lever-
aging logically related knowledge. For instance,
as shown in Figure 1, even if a model forgets the
knowledge “Patient John is diagnosed with dia-
betes” from the target forget set, it may still recon-
struct this knowledge through related knowledge
outside the target forget dataset, such as “Patient
John requires regular insulin administration” and
“Insulin is a standard treatment for diabetes man-
agement”.

To validate our hypothesis, we conduct a prelim-
inary experiment using a virtual character dataset,
which contains both a target forget set and a re-
lated knowledge set (§4). Our results reveal that
when a model is trained on both sets, unlearning
only the target forgetting set is insufficient for com-
plete knowledge removal. However, when related
knowledge is included in the unlearning process,
the model demonstrates significantly improved for-
getting effectiveness on the target forget set. These
findings suggest that LLMs can reconstruct target
knowledge that should be forgotten by related in-
formation.

Given that LLMSs are trained on massive datasets,
and their training data is often inaccessible, con-
structing complete related knowledge sets remains
a major challenge. This raises a crucial question:
Can related knowledge unlearning be achieved
without requiring additional training data? To ad-
dress this, we propose UIPE (Unlearning Improve-
ment via Parameter Extrapolation), a plug-and-play
auxiliary unlearning method (§5). This method is
founded on a crucial observation: the unlearning of
target knowledge triggers the forgetting of related
knowledge. This phenomenon stems from the fact
that related knowledge exhibits similar distribu-
tion characteristics in the parameter space, leading
to highly correlated gradient changes (Qin et al.,
2024; Xie et al., 2024). By amplifying the gradient
ascent updates on the target forget set, we extend
its gradient update effects to the related knowledge
set, significantly enhancing the model’s capability
to forget related knowledge. Experimental eval-
uations based on the TOFU benchmark demon-
strate that our method enables various unlearning
approaches to achieve optimal trade-offs between
forget quality and model utility preservation.

We summarize our contributions below.

* We identify the limitation of the GA method
in unlearning related knowledge, which we
found to be a key factor behind the unsatisfac-

tory unlearning performance of models.

e We introduce the UIPE method, which uti-
lizes parameter extrapolation to enhance the
model’s ability to forget related knowledge.

* We conduct experiments on various GA-based
unlearning methods using the TOFU bench-
mark. The results demonstrate that UIPE facil-
itates a more optimal balance between model
utility and forget quality across these methods.

2 Related Work

2.1 Machine unlearning

Machine unlearning, a concept rooted in data pro-
tection regulations like the ‘right to be forgotten’
(Rosen, 2011), has evolved beyond its initial scope
of general data protection frameworks (Cao and
Yang, 2015; Hoofnagle et al., 2019; Bourtoule et al.,
2021; Nguyen et al., 2022). The field has experi-
enced rapid expansion, with applications now span-
ning multiple domains, including image classifi-
cation (Ginart et al., 2019; Golatkar et al., 2020;
Kurmanji et al., 2024; Jia et al., 2023), genera-
tive Al tasks such as text-to-image and image-to-
image synthesis (Zhang et al., 2023b; Kumari et al.,
2023; Gandikota et al., 2023; Fan et al., 2024b;
Li et al., 2024a), and federated learning systems
(Wang et al., 2022; Liu et al., 2023).

In the research literature, ‘exact’ unlearning
refers to the complete retraining of a model while
excluding the designated forgotten data points
(Nguyen et al., 2022; Jia et al., 2023; Fan et al.,
2024a). However, this approach has practical lim-
itations due to high computational costs and data
access requirements, leading to the development
of more efficient ‘approximate’ unlearning meth-
ods (Golatkar et al., 2020; Graves et al., 2021;
Chen et al., 2023; Kurmanji et al., 2024; Jia et al.,
2023). Furthermore, several methodologies now
offer provable and certified data removal guaran-
tees (Guo et al., 2019; Ullah et al., 2021; Sekhari
et al., 2021).

2.2 LLM unlearning

The importance of unlearning in LLLMs has in-
creasingly emerged, attracting more and more at-
tention Liu et al. (2024b); Zhang et al. (2023a).
Several research efforts have focused on employ-
ing gradient ascent techniques to achieve forget-
ting in target datasets (Jang et al., 2022; Yao et al.,
2023; Chen and Yang, 2023; Maini et al., 2024;



Zhang et al., 2024). Meanwhile, WHP and its im-
proved variant construct the teacher distribution
through a name replacement strategy to achieve
the goal of forgetting target knowledge (Eldan and
Russinovich, 2023; Liu et al., 2024¢). SOUL inves-
tigated the impact of second-order optimizers on
unlearning effectiveness Jia et al. (2024b). Some
unlearning methods have explored the data-model
interactions that could influence LLM unlearning,
such as weight localization-based unlearning (Yu
et al., 2023; Jia et al., 2024a), achieving forgetting
through modifications to LLMs’ hidden represen-
tations (Li et al., 2024b) or perturbations to the
model’s embedding layer (Liu et al., 2024a). Ad-
ditionally, ULD achieved unlearning through an
auxiliary smaller model Ji et al. (2024). Finally,
researchers have developed several benchmarks for
evaluating LLM unlearning effectiveness, such as
TOFU for fictitious unlearning (Maini et al., 2024),
WMDP for unlearning hazardous knowledge in
LLMs (Li et al., 2024b) and RWKU for zero-shot
konwledge unlearning (Jin et al., 2024).

3 Preliminaries

3.1 Unlearning

LLM unlearning strives to eliminate undesired
data without significantly compromising the over-
all performance of large language models. We rep-
resent question-answer pairs derived from specific
factual knowledge k; as (z;, y;), where x; denotes
the question and y; represents the corresponding
answer. Given a dataset D = {(z;,y;)},_, con-
taining n question-answer pairs, let Py be a model
trained on D. The goal of LLM unlearning is to en-
sure that Py completely forgets the knowledge con-
tained in the target forget set Dy = {(z;, i) };4
(m < n). After unlearning, the model’s perfor-
mance should be indistinguishable from a model
trained exclusively on the retained dataset D, =
D\Dy.

Evaluation of LLM unlearning effectiveness is typ-
ically assessed along two key dimensions (Maini
et al., 2024): model utility, which measure the gen-
eral capabilities of the unlearned model, and forget
quality, which quantifies the extent to which the
targeted knowledge has been successfully removed.
Gradient ascent is an important method for LLM
unlearning, designed to reverse the optimization
process on a designated forget set. The method
builds upon the standard training paradigm of the
Py, which minimizes the prediction loss over the

full dataset D. To enforce forgetting, gradient as-
cent maximizes the prediction loss on the target
forget subset Dy, effectively approximating the re-
versal of the original optimization process. This
procedure can be equivalently interpreted as per-
forming gradient descent on the negative prediction
loss (Zhang et al., 2024). The gradient ascent ob-
jective, denoted as L 4, is formulated as:

Lea(0) = Ep, [log (Py (y|z))] - 1
3.2 Similar Parameter Distribution of Related
Knowledge

In this paper, related knowledge refers to knowl-
edge that is logically connected to a target piece
of knowledge and can be used to infer or recon-
struct it. Even after direct unlearning, an LLM
may still recall forgotten information by leveraging
related knowledge. Formally, given a knowledge
instance k; in the target forget set, another knowl-
edge instance k] is considered related knowledge
if the model can logically derive k; from k. using
its internal reasoning mechanisms.

In LLMs, related knowledge typically exhibits
similar storage distribution patterns, leading to cor-
related parameter updates during model training
(Qin et al., 2024).When modeling the storage char-
acteristics of k; and k, in the model through gra-
dients, these related knowledge instances often
demonstrate high cosine similarity in their gradi-
ents. For example, consider two related question-
answer pairs: based on knowledge k;, the pair
(x4,y;) consists of "What is patient John’s condi-
tion?" and "Patient John has been diagnosed with
diabetes.", while based on knowledge £/, the pair
(x,y;) consists of "What treatment did John re-
ceive?" and "Patient John requires regular insulin
injections.". When modeling the storage distribu-
tion of k; and k] using gradients, their respective
gradients VgPy (y;|z;) and VoPy (yi|x}) exhibit
high cosine similarity, indicating their interdepen-
dence. This similarity is quantified as:

Ro(ki, k;) = cos (VoPo (yi|x:) , VoPo (yilz}))
2

4 Preliminary Experiments

To validate this hypothesis that LLMs can leverage
related knowledge to reconstruct forgotten knowl-
edge, we first construct a target forget set along
with a corresponding related knowledge set, and
then conduct a series of comparative experiments
to systematically evaluate this phenomenon.



4.1 Data Construction and Evaluation
Metrics

We construct a comprehensive synthetic personal
dataset comprising two subsets: a target forget set
and a related knowledge set. Specifically, we uti-
lize GPT-4 to generate experimental data for 12
fictional individuals, each characterized by 10 spe-
cific attributes (e.g., biometric features, address,
etc.). For each attribute, we meticulously design
two corresponding question-answer pairs: (z;, y;)
explicitly describes the personal information asso-
ciated with the attribute, while (x}, y}) is logically
related to (x;, y;), and can be inferred from it based
on the model’s inherent common-sense reasoning
capabilities.

As aresult, the collection of all (z;, y;) pairs con-
stitutes the target forget set, while all corresponding
(«},y.) pairs form the related knowledge set. No-
tably, all data in this dataset are entirely synthetic,
ensuring that the model has not been exposed to this
information during pre-training. Detailed prompts
and data samples are provided in Appendix A.

To assess the effectiveness of unlearning, we
evaluate model utility using ROUGE-L (Lin, 2004)
scores on the Truthful QA (Lin et al., 2022) dataset.
Meanwhile, we measure forget quality by comput-
ing ROUGE-L scores on the target forget set.

4.2 Impact of Related Knowledge on LLM
Unlearning

In this experiment, we investigate the influence of
related knoweldge on the effectiveness of unlearn-
ing in LLMs, using LLLaMA-2-7b-chat (Touvron
et al., 2023) as the research subject. By applying
different combinations of training data and unlearn-
ing operations, we construct multiple model vari-
ants to systematically analyze how related knowl-
edge affects the unlearning process. Table 1 pro-
vides the detailed experimental configurations.

» We first fine-tune the LLaMA-2-7b-chat on both
the target forget set and related knowledge set, al-
lowing it internalize all relevant knowledge. We
then apply the GA method to unlearn only the
target forget set, resulting in model Pp, . It simu-
lates the unlearning process in real scenarios.

* We fine-tune the LLaMA-2-7b-chat exclusively
on the target forget set, ensuring it has no prior
exposure to related knowledge. We then apply
the GA method to unlearn the target forget set,
yielding model Py, .

Table 1: Variant Models with their corresponding train-
ing data and unlearning operations.

Model Fine-Tune Dataset Unlearning Dataset
target forget set
P target forget set
b related knowledge set g g
Po, target forget set target forget set
P target forget set target forget set
03

related knowledge set related knowledge set

* We fine-tune the model on both the target for-
get set and related knowledge set. We then em-
ploy the GA method to simultaneously unlearn
both knowledge sets, producing model Py,. This
setup allows us to investigate whether explicitly
unlearning related knowledge improves the effec-
tiveness of forgetting the target knowledge.
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Figure 2: Model unlearning performance over 10
epochs. Left: Model utility (higher Rouge-L score
indicates better utility). Right: Forget quality (lower
Rouge-L score indicates unlearning effectiveness).

Figure 2 presents the performance of the mod-
els during the unlearning process across different
epochs, evaluating both forget quality and model
utility. From the results, we can draw the following
conclusions:

¢ Models can reconstruct forgotten knowledge
by leveraging related knowledge. Compared to
Pe,, Pg, exhibits poorer model utility and lower
forget quality. The key difference between these
models is Py, was trained on both the target for-
get set and the related knowledge set, whereas
Py, was trained only ont the target forget set.
Consequently, even after unlearning the target
forget set, Py, can still reconstruct the forgot-
ten knowledge by leveraging related knowledge,
leading to suboptimal forgetting performance.
This finding validates our hypothesis that related
knowledge enables LLMs to infer forgotten infor-
mation, reducing the effectiveness of unlearning.



¢ Unlearning related knowledge enhances forget
quality on the target forget set. Compared to
Po, » Po,, which undergoes unlearning on both
the target forget set and the related knowledge set,
demonstrates a significant improvement in forget
quality on the target forget set, while maintaining
comparable model utility. This further validates
the correctness of our hypothesis.

Despite these findings, real-world application re-
mains challenging. The vast scale of LLM training
data and the difficulty of identifying internal knowl-
edge make constructing a comprehensive related
knowledge set infeasible. As a result, replicating
the approach used for Py,, where both target and
related knowledge are unlearned—is impractical.
This raises a critical question: Can related knowl-
edge be unlearned without additional training
data?

5 Methodology
5.1 Rethinking the Effectiveness of GA

To address the existing challenge, we conduct an in-
depth analysis of model Py, , which is first fine-tune
on both the target forget set and related knowledge
set, followed by unlearning on the target forget set.
During the inference phase, we evaluate not only
the forget quality on the target forget set but also
evaluate its forget quality on the related knowledge
set, thereby systematically analyzing the forgetting
effects of Py, on both datasets.
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Figure 3: Py, ’s forget quality on both the target forget
set and the related knowledge set, unlearning for 10
epochs (lower Rouge-L score indicates better quality).

Through Figure 3, we observe an interesting phe-
nomenon: although Py, only undergoes unlearning
training on the target forget set, it improves the
forget quality not only for the target forget set but
also for the related knowledge set.

We first analyze how the GA method facili-
tates the forgetting of target knowledge. For-
mally, we use Py, . denote the initial model cor-
responding to Py, that has only undergone fine-
tune without unlearning training. For any example
k; = (x4,y;) in the target forget set (its correspond-
ing example k, = (z,y.) in the related knowledge
set), the GA method performs gradient ascent on
model Py, ., with the parameter update expressed
as:

ini’

01 =0ini +1-VoLga (Gini)
V9P9mi (yz\xl)
Po;i (YilTs)

v

=0Oini +1- 3)

where vector v represents the parameter update
of model Py,,, on ki, VoPy, . (yilx;) is the gra-
dient of k; in the model and 7 is the learning
rate. Namely, 6;,; is updated in the direction of
VoPo,,. (yi|zi). Therefore, when the model up-
dates its parameters along the gradient direction of
the knowledge in the model, it leads to the forget-
ting of this knowledge.
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Figure 4: The parameter update vector v in the gradient
direction of k; also induces a projected update v’ in the
gradient direction of k.

Furthermore, we analyze how GA is capa-
ble of forgetting related knowledge. Based
on the theory of related knowledge sharing sim-
ilar parameter distributions, we model the stor-
age distributions of knowledge k; and k] using
the gradients VyPy, . (yi|z;) and VoPy, . (yi|z})
in the model Py, .. Since v and VyPy, . (yi|z;)
share the same direction, the cosine similar-
ity Ry, (ki,k.) between VgPy, . (yi|z;) and
VoPo,,. (yi|z;) is also the cosine similarity be-
tween v and VyPy,  (yi|z;). This results in v
having a projection component in the direction of
VoPa,,. (yi|x}), as illustrated in Figure 4, denoted
as v’. The expression for v’ can be derived using



the projection formula as follows:
v = ’U| ’ RQim(kiv k;) ) U/o “4)

where v] is the unit vector of V¢Py, . (yi|x}).
Therefore, the update of the model parameters also
generates a projection component in the direction
of the gradient of the related knowledge, leading to
the forgetting of that knowledge.

However, updates through the projection rela-
tionship are limited. As shown in Figure 3, the for-
getting quality on the related knowledge set stops
improving towards the end of the unlearning pro-
cess. Specifically, once the model P, ; has com-
pletely forgotten knowledge k;, VoPy, , (yi|x;) no
longer represents the storage of k; in Py, . Conse-
quently, Ry, .(k;, k) becomes meaningless, caus-
ing the projection relationship in Equation 4 to fail.
This prevents parameter updates in the gradient di-
rection of knowledge £/, thus making it impossible
to continue forgetting knowledge k..

5.2 UIPE

Based on the observation that model unlearning on
the target forget triggers unlearning effects in the
related knowledge, we leverage the projection rela-
tionship between v and v’ to achieve related knowl-
edge unlearning without additional data, thereby
proposing the UIPE method.

Specifically, we aim to extrapolate the existing
parameter update v made on k;. Correspondingly,
the existing update of the projection v’ in the di-
rection of VPy, . (yi|z}) is also extrapolated to
achieve more thorough forgetting of the related
knowledge. In this paper, we utilize linear extrapo-
lation (as illustrated in Figure 5, simply amplifying
the existing updates). The UIPE method can be
expressed as:

Qm‘pe = Oini + (1 + a) - %)

where « is an amplify coefficient controlling the
amplification magnitude of v. This formula shows
that compared to the original gradient ascent up-
date 3, the UIPE method adds an amplified update
vector (1 + «) - v to the initial model parameters
0ini, with the amplification degree controlled by
the scalar «. Based on Equation 4, the projection
of the amplified update vector (1 + «) - v in the
direction of VyPy, . (y;|x}) can be expressed as:
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Figure 5: UIPE amplifies the existing parameter update
v through linear extrapolation, correspondingly ampli-
fying the projection v’.

UIPE increases the model’s parameter updates
in the direction of VyPy, . (yi|x;) by amplify-
ing v. More importantly, due to the presence of
Ry, (ki, k), when the update vector v is ampli-
fied by a fixed coefficient «, UIPE performs larger
parameter updates in the corresponding direction
for knowledge k/ that exhibits stronger correlation
with knowledge k; (higher values of Ry, . (k;, k})).

In practical applications, UIPE can be imple-
mented through three core steps: First, based on
the target forget dataset Dy, the initial model Pp, ;
is trained for multiple rounds using gradient ascent
algorithm or its variants. The unlearning model
P, from the optimal round is selected based on
forget quality and model utility, ensuring effective
forgetting of target knowledge while maintaining
general model capabilities. Next, we compute the
parameter update vector v = 6y, — Oin; generated
during the unlearning process. Finally, by introduc-
ing a hyperparameter « to directionally amplify v,
we add the extrapolated update « - v to 0y, enhanc-
ing the model’s ability to forget knowledge highly
related with the target knowledge, ultimately out-
putting the optimized model Py,

6 Experiments

6.1 Experimental setup

Dataset and Model. We assess the performance
of UIPE on the TOFU benchmark (Maini et al.,
2024), which includes 200 fictional author profiles,
each containing 20 question-answer pairs. TOFU
defines three forgetting levels: ForgetO1, Forget05,
and Forget10, which correspond to the forgetting of
1%, 5%, and 10% of the data, respectively. The ef-
fectiveness of the unlearning methods is evaluated
on the LLaMA-2-7B-chat model using two metrics:
Forget Quality and Model Utility, as described in
Maini et al. (2024).
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Figure 6: Results of TOFU benchmark tests after applying UIPE to four baseline LLM unlearning methods. For the
1% and 5% target forget datasets, dual-scale plots are employed (linear scale above and logarithmic scale below the
black line), while the 10% dataset uses a uniform logarithmic scale throughout. Gray lines illustrate the baseline
method trajectories (black dots indicate initial metrics, gray dots show metrics after five unlearning epochs), while
orange lines represent metric changes after UIPE application.

Baselines. We evaluate the effectiveness of the
proposed UIPE method by applying it to a series
of LLM unlearning techniques. In addition to the
basic GA method, we conduct experiments with
Grad. Diff. (Yao et al., 2023),KL Min. (Chen and
Yang, 2023), and NPO (Zhang et al., 2024) using
the TOFU benchmark. Detailed descriptions of
these methods are provided in the Appendix D.1.

Typically, we select the epoch with optimal for-
get quality from the baseline methods to apply
UIPE. However, when the model with optimal
forget quality exhibits low model utility, improv-
ing its forget quality becomes meaningless. In re-
sponse, we opt for models with higher utility but
sub-optimal forget quality. Experimental results
demonstrate that this strategy effectively achieves
an optimal trade-off between forget quality and
model utility.

6.2 Results

UIPE helps baseline unlearning methods
achieve optimal trade-offs in most scenarios.
Figure 6 illustrates the improvements made by

UIPE on the trade-off between forget quality and
model utility for various unlearning methods in For-
get01, Forget05, and Forgetl0. Specifically, GA,
Grad.Diff., and KL Min. methods demonstrate sub-
stantial improvements in forgetting performance
during the initial phase. However, these methods
show suboptimal performance in subsequent up-
dates: GA and KL Min. suffer from significant
drops in model utility, while Grad.Diff. experi-
ences poor forget quality. This indicates that con-
tinuing unlearning training with these methods fails
to effectively enhance the model’s forgetting per-
formance. In contrast, when combined with UIPE,
these methods show marked improvements. No-
tably, for the ForgetO1 dataset, UIPE helps KL Min.
achieve near-ideal forget quality (1.0) with mini-
mal loss in model utility. Although NPO signifi-
cantly outperforms the other three baseline meth-
ods, UIPE further enhances its forgetting perfor-
mance. For the ForgetO1 dataset, UIPE enables
NPO to reach a new optimal forget quality while ef-
fectively reducing model utility loss. On Forget05
and Forget10 datasets, while UIPE does not surpass



NPO’s best forget quality, it maintains high forget
quality while significantly reducing model utility
loss.

As the scale of forgetting data increases, UIPE’s
improvement effects show a weakening trend.
Specifically, in the Forget10, UIPE fails to improve
the forgetting performance of KL Min., while it pro-
vides only slight improvements for the other three
baseline unlearning methods. Baseline unlearning
methods generally exhibit poor performance when
handling large-scale target data (Maini et al., 2024),
resulting in low-quality parameter update vectors
v. Consequently, even though UIPE’s amplifies v,
it fails to significantly enhance the forgetting of
related knowledge.

6.3 Amplify Coefficient

In UIPE, the amplify coefficient o controls addi-
tional parameter updates. We analyze the effect of
different o on four unlearning methods using For-
get01 dataset. For each method, we select an epoch
as the base unlearning model and apply UIPE with
varying « values. We then compare the forget qual-
ity of these UIPE models with that of the base
model. When oo = 0, we measure the forget quality
difference between the next epoch and base model.
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Figure 7: Performance of UIPE with different amplify
coefficient a.

As shown in Figure 7, in the Grad. Diff. method,
larger « values improve forget quality. In the KL
Min. method, forget quality consistently increases
with rising « values. In the NPO method, forget
quality exhibits relatively low sensitivity to changes
in a. For GA, forget quality first improves and
then deteriorates as « increases, with the deteriora-
tion likely due to over-forgetting. As analyzed in
Section 5.2, large « values may affect knowledge

with low storage similarity, leading to a decline in
model performance. However, the negative impact
of UIPE on GA is still less severe than the decline
observed in the original GA method.

6.4 Forgetting Related knowledge

Does UIPE effectively enhance the forgetting of
related knowledge? As shown in Figure 3, after the
8th epoch, GA fails to further improve the forget
quality of Py,. Therefore, we choose to perform
UIPE operations based on this.

05k GA 0.5001
UIPE
. 41316
04+ 0. 38386
-
bost
>
o) 0.23299 5 9933 . 23589
o2}
0.1}
0.0
Truthfulga Target Forget Set Related Knowledge Set
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Figure 8: Performance changes after applying UIPE
to the GA-trained model Pyp,. A higher ROUGE-L
score on Truthful QA indicates better model utility, while
lower ROUGE-L scores on the target forget set and re-
lated knowledge set indicate better forget quality.

As illustrated in Figure 8, while UIPE slightly
reduces model utility, it significantly improves for-
get quality on both the related knowledge set and
the target forget set. These results confirm that
UIPE effectively facilitates the unlearning of re-
lated knowledge and strengthens the overall forget-
ting performance.

7 Conclusion

In this paper, we investigate the impact of knowl-
edge related to forgetting targets on the effective-
ness of target knowledge elimination. Based on
this, we propose UIPE (Unlearning Improvement
via Parameter Extrapolation), a technique that ef-
fectively forgets related knowledge without requir-
ing additional training. Through extensive experi-
mental validation across various unlearning meth-
ods, results demonstrate that UIPE significantly
enhances these methods’ ability to forget target
knowledge.



Limitations

Despite the effectiveness of our approach, there
are two main limitations to be addressed in future
work. First, The optimal amplify coefficient « re-
quires manual selection across different baseline
methods, necessitating further research to establish
automated selection strategies for o. Second, our
study focuses on LLaMA2-7B. The larger parame-
ter scales model (e.g., 70B) typically contain richer
and more complex knowledge representations. Fur-
ther research is required to assess the effectiveness
of UIPE on such larger-scale models.

Ethics Statement

Our work aims to mitigate privacy and security
concerns inherent in LLMs. However, users should
exercise caution in practical applications, as alterna-
tive pathways may exist to expose unlearned knowl-
edge. The existing datasets used in this study are
obtained from official sources and utilized in ac-
cordance with their intended purposes. For newly
created data, we strictly adhere to virtualization re-
quirements during generation and employ manual
verification to ensure no real information is dis-
closed, aligning with their intended use for public
research and access.
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A Prompt and Data Sample

Table 2 illustrates the data construction prompt used in our preliminary experiments, which requests
GPT-40 to generate information for 12 virtual individuals. The information for each virtual individual
consists of 10 specific attributes, with each attribute containing two question-answer pairs: K1 and K2.
Based on the K2 question-answer pairs and the general common-sense knowledge of the large model, it is
possible to infer the K1 question-answer pairs, indicating a logical relationship between them. Table 3
presents a specific example of one generated virtual individual. After generating the 12 virtual individuals,
we compile all K1 question-answer pairs into the target forget set, while all K2 question-answer pairs
form the related knowledge set.

Table 2: The prompt for generating fictional individuals data using GPT-4o0.

Please provide 12 sample in JSON format, each sample containing information about a person,
including 10 Q&A pairs K1 and K2, with the following requirements:

1. Each question and answer pair is about personal privacy (biometric features, occupational
information, address, health and medical information, personal property information, track of
when, network activity information, family, marriage, personal communication information), and
all information presented here is fictional.

2. Based on K2, K1 can be inferred through common sense.

3. Strictly follow the privacy type of each question and answer in the example, but the questions
should have diversity.

Here is an example about John:

B Training Details

We select LLaMA-2-7b-chat as our base model and employ Low-Rank Adaptation (LoRA) for both
fine-tuning and unlearning processes. During the fine-tuning phase, we set the learning rate to le-4,
batch size to 4, and LoRA rank to 4, conducting training on a single NVIDIA RTX 4090 GPU. For the
unlearning phase, we adjust the learning rate to Se-5 while maintaining the batch size of 4 and LoRA
rank of 4, also training on a single NVIDIA RTX 4090 GPU. In both phases, we exclusively update the
parameters of two target modules: "q_proj" and "v_proj".



Table 3: Sample of fictional individual generated based on 10 specific attributes.

"name”: "john",
"Biometric features”: [
{
"type": "k1",
"question”: "What is John’s blood type?"”,
"answer": "John has type A positive blood."
}Y
{
"type": "k2",
"question”: "What blood types can John donate to?",
"answer": "John can donate blood to type A, AB, and O positive
— individuals.”
3
]:
"Occupational information”: [
{
"type": "k1",
"question”: "What is John’s profession?”,
"answer": "John works as a software engineer at a tech company."”
1,
{
"type": "k2",
"question”: "What programming languages does John use at work?",
"answer"”: "John primarily uses Python, Java, and JavaScript in his
— daily work."”
}
])
"Address": [
{
"type": "k1",
"question"”: "Where does John live?",
"answer"”: "John lives in a townhouse in a suburban neighborhood."”
}Y
{
"type": "k2",
"question”: "How is John’s living environment?",
"answer"”: "John’s home has good air quality away from the bustle
— of downtown, with a small yard and terrace.”
3
]v
"Health and medical information”: [
{
"type": "k1",
"question": "Does John have any chronic conditions?”,
"answer"”: "John has been diagnosed with asthma.”
}’
{
"type": "k2",
"question”: "What medication does John use?",
"answer"”: "John uses an inhaler with a steroid medication.”
3



C Algorithm

Algorithm 1 UIPE
Require:
Initial model parameters 6;y;
Target forget dataset Dy
Training epochs T'
Extrapolation coefficient o
Ensure:
Enhanced unlearned model 0yipe
procedure UNLEARNING PHASE
fort =1to T do
O < 01 +nVy[Lca(0)] > Initial forgetting training
U, + EvalUtility (6, D,)
F; < EvalQuality(6;, Dy)
end for
Oun < selecty,[Fy, U] > Select a model that balances forget quality and model utility
end procedure
Update Vector Calculation:
vV 4 Oun — Oini > Calculate update vector
: Knowledge Extrapolation:
¢ Buipe < Oun + - v > Parameter extrapolation
: return Oyipe
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D Experimental details

D.1 Baseline LLM unlearning methods

In addition to the basic Gradient Ascent (GA) method, we also conduct experiments on three other
unlearning techniques using the TOFU benchmark

* Grad. Diff. This approach not only aims to increase the loss on the forget dataset Dy but also strives
to maintain performance on the retain dataset D,..

* KL Min. This approach not only seeks to increase the loss on the forget dataset Dy but also
minimizes the Kullback-Leibler (KL) divergence between the fine-tune model and the unlearning
model on the retain dataset D,..

* NPO Inspired by preference optimization, this approach can be regarded as a variant that focuses
solely on negative samples.

D.2 Training Details

In the TOFU benchmark, The authors provide the tofu_ft_llama2-7b model, which is fine-tuned on the
TOFU dataset using LLaMA-2-7b-chat as the base model. We use this model for our experiments. We
refer to the experimental details of TOFU and NPO for full fine-tuning. Specifically, we employ a learning
rate of 1e-5 for the ForgetO1 and Forget0O5 datasets, and a learning rate of 1e-6 for the Forget10 dataset,
aiming to maximize the performance of these baseline methods. During training, the batch size is set to 1,
and the process is conducted on two NVIDIA A800 80GB GPUs.



